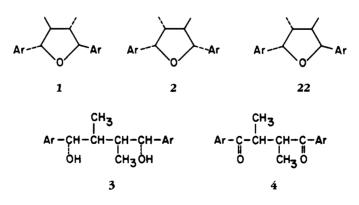
CHEMISTRY OF SAURURUS CERNUUS III:¹ SOME REACTIONS OF THE DIARYLBUTANE-TYPE NEOLIGNANS

KOPPAKA V. RAO and FRANCISCO M. ALVAREZ

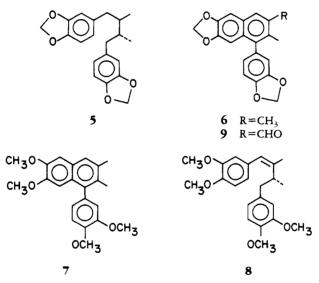

Department of Medicinal Chemistry, College of Pharmacy, University of Florida, Gainesville, Florida 32610

ABSTRACT.—The reaction of austrobailignan-5 (5), a 1,4-diarylbutane-type neolignan, and the major lignoid component of *Saururus cernuus*, with dichlorodicyanoquinone was found to yield the corresponding 4-arylnaphthalene (6) through cyclization and aromatization of the 4-carbon bridge. The reaction also gave as a by-product, a compound in which one of the methyl groups was oxidized to an aldehyde (9). Conditions for the conversion of (\pm) 2,3-diveratroylbutane exclusively to either (\pm) veraguensin (2) or (\pm) galbelgin (1) are described. Another set of conditions gave a mixture of these two and a third neolignan, saucernetin (22), recently isolated from *S. cernuus*.

The isolation of seven lignoids from *Saururus cernuus* and their structural elucidation has been described earlier (1,2). These represent a variety of neolignoid structural types, some novel and some already known. Compounds such as manassantins A and B, which show some degree of neuroleptic activity, contain a central 2,5-*bis*-(4-hydroxy-3-methoxyphenyl)tetrahydrofuran system with each of the phenolic hydroxyls being converted to an arylglycolyl ether. These compounds thus consist of a novel dineolignan skeleton, and a synthesis of such a system must start with the appropriate diaryltetrahydrofuran.

Past syntheses of 2,5-diaryltetrahydrofuranoid neolignans such as galbelgin (1) and veraguensin (2) were based on radical coupling of phenolic monomers (3-5), and very little effort was devoted to the cyclization of the corresponding diols such as 3. Details for the stereochemical preference for the formation of 3 from the dione 4 or for the acidcatalyzed cyclization of 3 to the tetrahydrofuran have not been readily available. The current objective is to examine the conditions for the cyclization of a diol such as 3 to either 1 or 2. Also, because the plant *S. cernuus* contains as the major lignoid component, the known (-)-austrobailignan-5 (5) (1,7), a 1,4-diarylbutane-type neolignan, a study of the feasibility of its conversion to a diol such as 3 was made first and is described here.

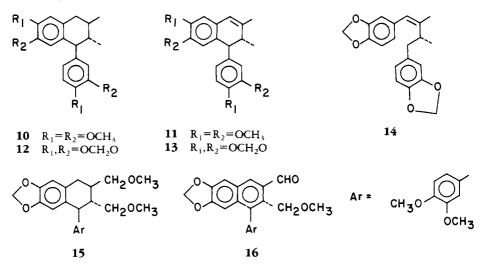
Functionalization of the two benzylic carbons of 5 with halogen, OH, or C=O groups was studied first using a variety of reagents and conditions. Thus, benzylic



Ar=3,4-Dimethoxyphenyl

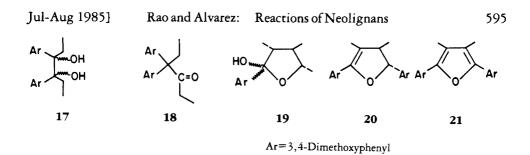
¹For Part II, see Rao and Alvarez (2).

bromination of **5** was attempted using N-bromosuccinimide (NBS) as well as Br_2 , but the reactions yielded mostly the known nuclear bromination product (7). The action of Pb(OAc)₄ on **5** in HOAc also gave a mixture of products consisting of phenolic compounds and the corresponding quinonoid substances but none with the desired functionality such as Ar-CH(OH)- or Ar-CH(OCOCH₃)-.


Several reagents known to convert benzylic methylene to a keto function were, likewise, without effect, i.e., either gave no reaction or gave steady destruction of the compound. However, **5** reacted smoothly with dichlorodicyanoquinone (DDQ) to yield a crystalline product with the molecular formula $C_{20}H_{16}O_4$, as compared with $C_{20}H_{22}O_4$ for **5**. Its uv spectrum showed sharp maxima at 328 and 315 nm, which were absent in **5**, and the relative intensities of the peaks at 285 and 235 nm were also different. The nmr spectrum: $\delta 2.06$, 2.38, s, 3H each; 5.83, 5.96, s, 2H each; 6.50-7.71, m, 6H, clearly showed that the compound had the structure **6** (8), in which the central 4-carbon chain was converted to a cyclic and aromatic system. The product was analogous to the well-known dehydroguaiaretic acid dimethyl ether (**7**) prepared from guaiaretic acid dimethyl ether (**8**) by the action of Hg(OAc)₂ and I₂ (Hubl's reagent) by Schroeter *et al.* (9). The reaction of **5** with DDQ also gave a minor product identified as the aldehyde **9**.

The conversion of 5 to 6 required a minimum of two equivalents of DDQ. With three equivalents and at a temperature of 80-100°, the reaction was essentially complete in 1 h, yielding a 3:1 mixture of 6 and 9. Among the solvents tried, MeOH, dioxane, and xylene were suitable, but pyridine was not. Conversion of 5 to 6 also proceeded with SeO₂ in HOAc, or NBS in C₆H₆, or CHCl₃ in the presence of a sunlamp. In dioxane, however, NBS gave the nuclear bromination product.

To gain additional insight, the course of the reaction with two equivalents of DDQ was followed at 20° by gc analysis. The major product 6 started after 1-2 h and continued to increase, while the aldehyde 9 appeared only after 10-15 h. In addition to these, a series of peaks that might be considered as intermediates were found. Two of these of significant intensity were designated as I_1 and I_2 . During the gc-monitoring of the reaction, the concentrations of these intermediates increased until 6 and 9 began to appear and then decreased as 6 and 9 increased. A mixture of these could be separated from the other components, but the two were almost inseparable except by gc or extensive and repeated tlc. When separated in this way on a small scale, I_1 showed a uv spec-


trum nearly identical to that of guaiacin dimethyl ether (10) (1), while I_2 showed λ max of 285 nm but with a pronounced shoulder at 310-315 nm. This spectrum was nearly identical to that of cyclogalbelgin (11) (1). These spectra together with a gc/ms analysis of I_1/I_2 mixture showed that the two compounds had the structures 12 and 13, with 12 being the major component. Thus, the reaction did not generate a compound with an unsaturated chain such as 14, analogous to guaiaretic acid dimethyl ether (8). It appears that a carbocation generated by DDQ, instead of undergoing elimination to give 14, prefers to cyclize to 12. Further dehydrogenation of 12 to 13 and eventually to 6 have precedents in the literature.

In recent years, a number of publications appeared on the action of DDQ on lignoid compounds (10-12). The most relevant of these deals with the conversion of **15** to **16**, in which a tetrahydronaphthalene was converted to a dihydronaphthalene and subsequently to a naphthalene, and a $-CH_2OCH_3$ group on the side-chain to an aldehyde. In this example **15**, a cyclic system was already present, and dehydrogenation of such a system to a naphthalene is readily accomplished. Even in the case of conversion of **8** to **7**, the 4-carbon chain has a double bond that provides a focus for attack. In contrast to both these examples, in the present case of **5**, a fully saturated 4-carbon chain has been cyclized and aromatized to give **6**. Formation of the minor product **9** either from **13** or **6** is in line with that reported by Ward *et al.* (10), although in the present case a CH₃ group instead of a CH_2OCH_3 group has been oxidized to an aldehyde.

Because 5 could not be converted to a diol, the alternative diol 3 was prepared by synthesis from 4, which was obtained by the coupling of 3,4-dimethoxypropiophenone and 2'-bromo-3,4-dimethoxypropiophenone in liquid NH₃ and Na (6,13). This reaction gave, besides the expected dione 4, a crystalline by-product for which the structure 17 was assigned. When treated with an acid, 17 rearranged to the ketone 18 (ν 1700 cm⁻¹, m/z 372, 315). Oxidation of 17 with periodate yielded 3,4-dimethoxypropiophenone.

Reduction of the diketone 4 by LAH gave the diol 3 (6). Alternate reduction of the diketone 4 with NaBH₄ gave, as the major product, the hydroxytetrahydrofuran 19. Its structure was confirmed by its ready conversion to 20 in the presence of acid, or Ac_2O and pyridine, and to the furan 21 by treatment with Pd/C. Catalytic hydrogenation of 20 gave veraguensin (2) as the sole product. Although Biftu *et al.* (6) prepared veraguensin from 4 by direct catalytic reduction with a low catalyst/substrate ratio, this reduction has been found to be very slow and yields a mixture of products.

Cyclization of the diol **3** was studied under a variety of conditions: BF_3 or CF_3CO_2H in C_6H_6 ; HOAc (neat) or 1% HOAc in $CHCl_3$ with a sun lamp, no reaction occurring without the sun lamp; sulfonic acid type resin; $CuBr_2$ in EtOAc; and heating at 150° in oxydiethanol. When the products were analyzed by gc, galbelgin (1) was found to be the almost exclusive product. Previously, Biftu *et al.* (6) subjected the diol **3** to catalytyic hydrogenation and isolated a mixture of galbelgin (1) and galbulin (a phenyltetralin similar to 10). The present method yields galbelgin (1) as the exclusive product. An attempted preparation of the bismethanesulfonate of the diol **3** to study cyclization by displacement, instead, gave a mixture of the tetrahydrofurans: 1, 2, and saucernetin (22) in a ratio of 6:3:1.

Thus, the acid-catalyzed cyclization of the diol 3 leads to galbelgin (1) as the exclusive product in high yields. There is a minor possibility of inversion if the displacement route is used, leading also to veraguensin (2) or, to a lesser extent, saucernetin (22). Conversion of the dione 4 exclusively to veraguensin (2) is accomplished readily via 20 and 21 in high yields.

EXPERIMENTAL

GENERAL EXPERIMENTAL PROCEDURES.—Melting points were determined on a Fisher-Johns apparatus and are uncorrected. The following conditions and instrumentation were used for obtaining the spectra described: uv, EtOH, Beckman 35; ir, KBr pellet, Beckman Acculab 3; nmr, CDCl₃ unless otherwise specified, Varian T-60 with TMS as internal standard; and ms, Hitachi Perkin-Elmer RMU-6E. Column chromatography was carried out using silica gel (Merck <0.063 mm); tlc on silica gel (Fisher, H-60 P254,366); and gc on a Varian 2100 gas-chromatograph with a column packing at OV-225 and temperature of 240-260°.

CONVERSION OF **5** TO **6** AND **9**.—A solution of **5** (0.33 g) in dioxane (15 ml) was boiled under reflux with DDQ (1 g, 3 eq) for 1 h. The cooled and filtered reaction mixture was diluted with C_6H_6 and washed successively with aqueous 5% NaHSO₃, 0.5 N NaOH, and H₂O. The solvent layer was concentrated to near dryness, and the solid crystallized from Et₂O- C_6H_{14} (1:3) to yield **6** as colorless needles, mp 175°; yield, 0.21 g (65%); ms m/z 320 (100), 275 (4), 247 (4), 202 (6), 189 (9), 145 (3), 116 (4), 101 (6). Anal. calcd. for $C_{20}H_{16}O_4$: C, 74.99; H, 5.03, Found: C, 75.22; H, 5.11.

The filtrate from **6** was concentrated and purified by preparative tlc (silica gel, $C_6H_6-C_6H_{14}$, 1:1). The lower Rf compound was recovered and crystallized from MeOH, mp 165°; yield, 0.07 g, 22%; uv λ max 260, 310 nm; ir 1690 cm⁻¹; ¹H nmr δ 2.5, s, 3H (CH₃); 6.02, s, 4H (OCH₂O); 6.73-7.33, m, 6H (arom. H); 8.15, s, 1H (CH=O); ms *m/z* 334. *Anal.* calcd. for $C_{20}H_{14}O_5$: C, 71.85; H, 4.22, Found, C, 71.69; H, 4.35.

Alternatively, a solution of 5(0.33 g) in HOAc (5 ml) was beiled under reflux with SeO₂ (0.3 g) for 6 h. The cooled and filtered reaction mixture was processed as with 6, and the product purified by preparative tlc (1:1, C₆H₆-C₆H₁₄). The major band gave a crystalline solid, identical with 6.

A solution of $\mathbf{5}$ (0.33 g) in C₆H₆ was stirred with NBS (0.5 g) at 80° and in the presence of a sunlamp. After 3 h, the mixture was processed as described for **6**. Preparative tlc (1:1 C₆H₆-C₆H₁₄) gave two major bands. The faster band gave a crystalline solid, mp 95°, identical with dibromo $\mathbf{5}$ (7). The slower band, mp 175° was identical with **6**.

3,4-BIS(3,4-DIMETHOXYPHENYL)HEXANE-3,4-DIOL (17).—Condensation of 3,4-dimethoxypropiophenone(7.6 g, 0.04 mol) and 2'-bromo-3,4-dimethoxypropiophenone (10.52 g, 0.04 mol.) in liquid NH₃ (90 ml) in the presence of Na (1.02 g, 0.044 mol.) was carried out as described by Perry *et al.* (13). Crystallization from MeOH gave the racemic dione 4 (6 g, 78%). The filtrate was concentrated to dryness, the residue dissolved in C₆H₆, and chromatographed on silica gel (150 g). Elution with 2-5% Me₂CO in C_6H_6 , gave an additional amount of 4 (0.5 g) followed by the by-product 17, which was recovered and crystallized from MeOH; mp 159°; yield, 0.8 g; uv λ max 283 nm; ir, 3520, 1580, 1480, 1230, 1120, 1005 cm⁻¹; ¹H nmr δ 0.63, t, 6H; (2×CH₃); 1.83, m, 4H (2×CH₂); 2.56, s, 2H (2×OH); 3.80, s, 12H (OCH₃); 6.75, s, 6H, (arom. H). *Anal.* calcd. for $C_{20}H_{30}O_6$: C, 67.67; H, 7.74. Found: C, 67.48; H, 7.81.

A solution of 17(0.1 g) in MeOH (10 ml) was treated with 2N H₂SO₄ (1 ml) and 2N aqueous NaIO₄ (2 ml). After 2 h the mixture was shaken with C₆H₆, the solvent layer concentrated to dryness, and the solid crystallized from C₆H₁₄; mp 58°. It was identical with 3,4-dimethoxypropiophenone (13).

4,4'-BIS(3,4-DIMETHOXYPHENYL)HEXANE-3-ONE (18).—A solution of 17 (0.1 g) in C_6H_6 (10 ml) was stirred with CF_3CO_2H (0.5 ml) for 4 h. It was washed with aqueous NaHCO₃ and H₂O, dried (Na₂SO₄), and the C_6H_6 layer concentrated to dryness. Preparative tlc (5% Me₂CO in C_6H_6) gave a chromatographically homogenous glassy solid; yield, 0.08 g; uv λ max, 282 nm; ir 1705 cm⁻¹; ¹H nmr δ 0.65, t, 3H (CH₃); 0.83, t, 3H (CH₃); 2.28, m, 4H (2×CH₂); 3.78, s, 12H (OCH₃); 6.84, m, 6H (arom. H); ms *m*/z 372, 315, 57. *Anal.* calcd. for $C_{22}H_{28}O_5$: C, 70.94; H, 7.58. Found: C, 70.81; H, 7.63.

2,5-BIS(3,4-DIMETHOXYPHENYL)- 3,4-DIMETHYL-2-HYDROXY-TETRAHYDROFURAN (**19**).—A mixture of **4** (0.39 g) and NaBH₄ in THF (10 ml) and MeOH (10 ml) was stirred at 20° for 30 min. After addition of H₂O (50 ml), extraction with Et₂O and concentration of the solvent layer, the solid was crystallized from MeOH; mp 165°; yield 0.21 g; uv λ max 232, 280 nm; ir 3500 cm⁻¹; ¹H nmr δ 1.01, d, 6H (2×CH₃); 2.0, m, 2H (2×CH); 3.83, s, 12H (OCH₃); 4.64, d, 1H (Ar-CH-0); 7.0, m, 6H (arom. H). Anal. calcd. for C₂₂H₂₈O₆: C, 68.02; H, 7.27. Found: C, 68.21; H, 7.12.

2.5-B15(3,4-DIMETHOXYPHENYL-3,4-DIMETHYL- Δ^2 -DIHYDROFURAN (**20**).—To a solution of **19** (0.1 g) in C₆H₆ was added a 1:10 BF₃ etherate in C₆H₆ (0.1 ml). After 10 min it was washed with H₂O and the C₆H₆ layer concentrated to dryness. The solid was crystallized from Et₂O; mp 89°; yield, 0.07 g; uv λ max 280, 230 nm with a shoulder at 310 nm; ir 1640 cm⁻¹; ¹H nmr δ 1.23, d, 3H (CH₃); 1.90, s, 3H (CH₃); 3.0, m, 1H (CH-CH₃); 3.88, s, 12H (OCH₃); 4.90, d, 1H (Ar-CH-O); 7.0, m, 6H (arom. H). Anal. calcd. for C₂₂H₂₆O₅: C, 71.33; H, 7.08. Found: C, 71.45, H, 7.12.

Alternatively, a mixture of **19** (0.1 g), $Ac_2O(2 \text{ ml})$, and pyridine (0.5 ml) was heated at 100° for 30 min. The solid which separated on adding H₂O was filtered and crystallized from Et₂O. It was identical with **20**.

2,5-BIS(3,4-DIMETHOXYPHENYL>3,4-DIMETHYLFURAN (21).—A mixture of 19 (0.1 g), 5% Pd/C (0.05 g) in oxydiethanol (5 ml) was boiled under reflux for 2 h. The filtered mixture was diluted with H_2O (20 ml) and extracted with Et_2O . Concentration of the solvent layer gave a crystalline solid; mp 170°, identical with an authentic sample prepared by the method of King and Wilson (14).

VERAGUENSIN (2).—Compound 20 (0.2 g) in EtOAc (20 ml) was hydrogenated in the presence of 5% Pd/C (0.05 g) in a Parr apparatus for 2 h. The filtered mixture was concentrated to dryness and the solid crystallized from MeOH; mp 128°; yield, 0.18 g. It was identical with an authentic sample of veraguensin (2) (1).

GALBELGIN (1).—This was prepared by a number of methods starting from 3, which was obtained according to the method of Biftu *et al.* (6).

(a) A solution of 3(0.2 g) in $C_6H_6(10 \text{ ml})$ was treated with $CF_3CO_2H(0.1 \text{ ml})$ or BF_3 -etherate (0.1 ml) at 0°. After 1 h it was washed with H_2O , the C_6H_6 layer concentrated to dryness and the solid crystallized from MeOH. The product was identical with galbelgin (1) (8), yield 0.16 g.

(b) Compound **3** (0.2 g) in EtOAc (20 ml) was heated at reflux with CuBr_2 (0.2 g) or Dowex-50 (200-400 mesh, H⁺ form, 0.2 g) for 1 h. The filtered mixture was washed with H₂O and the solvent layer concentrated to dryness. The solid was crystallized from MeOH and was found to be identical with **1**.

(c) A solution of 3 (0.2 g) in CHCl₃ (10 ml) and HOAc (0.2 ml) was stirred at 20° in the presence of a sunlamp for 24 h. After washing with aqueous NaHCO₃ and H₂O, the CHCl₃ layer was concentrated to dryness. The solid after crystallization from MeOH was found to be identical with **1**.

CONVERSION OF **3** TO **1**, **2**, AND **22**.—To a solution of **3** (0.3 g) in pyridine (20 ml) was added CH₃SO₂Cl (0.5 ml). After 16 h it was diluted with H₂O, acidified (pH 2) and extracted with Et₂O. The concentrated Et₂O extract was crystallized from MeOH to yield **1** (0.12 g). The filtrate was concentrated and separated into components by preparative tlc (5% Me₂CO in C₆H₆, developed 3 times). Band 1 was found to be compound **2**, yield, 0.07 g. Band 2 yielded more of compound **1**, (0.02 g). Band 3 was crystallized from MeOH and shown to be identical with **22** (1); mp 80°; yield, 0.025 g.

LITERATURE CITED

- 2. K.V. Rao and F.M. Alvarez, Tetrabedron Lett., 4947 (1983).
- 3. K.V. Sarkanen and A.F.A. Wallis, J. Chem. Soc., Perkin I, 1869 (1973).
- 4. R. Ahmed, F.G. Schreiber, R. Stevenson, J.R. Williams, and H.M. Yeo, Tetrahedron, 32, 1339 (1976).
- 5. R. Stevenson and J.R. Williams, Tetrahedron, 33, 285 (1977).
- 6. T. Biftu, B.G. Hazra, and R. Stevenson, J. Chem. Soc., Perkin 1, 1147 (1978).
- 7. S.T. Murphy, E. Ritchie, and W.C. Taylor, Aust. J. Chem., 28, 81 (1975).
- 8. G.K. Hughes and E. Ritchie, Aust. J. Chem., 7, 104 (1954).
- 9. G. Schroeter, L. Lichtenstadt, and D. Irenen, Chem. Ber., 51, 1587 (1918).
- 10. R.S. Ward, P. Satyanarayana, and B.V. Gopala Rao, Tetrahedron Lett., 22, 3021 (1981).
- 11. S. Ghosal and S. Banerjee, Chem. Comm., 165 (1979).
- 12. R.S. Ward, A. Pelter, I.R. Jack, P. Satyanarayana, B.V. Gopala Rao, and P. Subrahmanyam, Tetrahedron Lett., 4111 (1981).
- 13. C.W. Perry, M.V. Kalnis, and K. Deitcher, J. Org. Chem., 37, 4371 (1972).
- 14. F.E. King and J.G. Wilson, J. Chem. Soc., 4011 (1964).

Received 31 January 1985